Applying the Unified Modeling Language to Hierarchical Performance Modeling

John P. Jones

The University of Connecticut, CSE 320

December, 1998

I.	Introduction

There are many thoughts on modeling software performance and equally as many models for doing so. Often, each model only addresses performance from one particular view of the software under study. An interesting variation on this is the hierarchical performance model which is essentially a “model of models” where several models each take a different view at a different level of the software. For example, one model may represent performance at the system level where we are concerned with components such as servers, workstations, databases and networks. For a more in-depth look at a particular component at the system level we might take a look from a task perspective to evaluate the performance of the tasks that, for example, the server is performing. We continue this decomposition of a component at one level into its representative components at a lower level until we arrive at the lowest level components; the architectural ones (memory, CPU, disks, etc.)

Typically, at each level we would use a distinct performance model to best capture the essence at what is happening there. For example, if we are evaluating performance of a server, we think in terms of queuing models; how many transactions can the server process over time, how many transactions are being requested of the server over time and so on.

An inherent problem with this form of hierarchical modeling is the differences between the models used at each layer. Each model potentially has a different language in its semantics and syntax. Ideally, to translate between models, semantics and syntax should be consistent between each model. This is where the Unified Modeling Language (UML) might be applied. The Unified Modeling Language (UML) has gained much momentum recently in that it is very powerful, very flexible and has a wide range of applications. By design, the UML has features that can address software performance modeling.

If each model were written using the UML establishing the relation of the models and doing the analysis would be simpler because of the common terms of each layer’s representation. Thus, the goal of this paper. Here we took one level of a hierarchical performance model and investigated how the UML could be applied. Once a relationship was successfully established we could then hypothesize on how the remainder of the hierarchical performance model’s layers could be incorporated into a new UML-based hierarchical performance model.

The format of this paper is as follows. Section II covers background information. It includes an overview of our hierarchical performance model, important details on one of the models that make up the hierarchical performance model, the Computation Structure Model and an overview of the UML itself. Once the background is out of the way, section III proceeds to establish a relationship between the Computation Structure Model and the UML. Several diagrams within the UML are identified for use and extensions of these diagrams that are particular well suited for performance measurement are discussed. Section IV extends the discussion to assess how this strategy could be applied to other layers of the hierarchical performance model.

II.	Background

A.	The Hierarchical Performance Model

Hierarchical performance modeling encompasses an ordering of models for different abstractions of the software into a hierarchy for the purpose of assessing the performance of the system under study. A high-level overview of our Hierarchical Performance Model (HPM) is shown in Figure 1. Four levels are contained; the System level, the Task level, the Algorithm level and the Architecture level. Initially when little is known about the system under investigation, the System level model can be used to assess performance. As more information about the system becomes available, more details can be filled in at the lower levels of the model leading to a more accurate representation of the software system and hence a better estimate of the software’s performance.

�

Figure 1 - The Hierarchical Performance Model

B.	The Computation Structure Model

At the Algorithm level of the HPM’s hierarchy lies the Computation Structure Model. The Computation Structure Model (CSM) itself contains two structures used to model software. These are the Data Flow and the Precedence graphs. The Data Flow graph is used to show the relationship between the storage cells required by a computation and the operators that perform the computation. The Precedence graph represents the order that the operations are executed while performing the computation described by the CSM.

The Data Flow graph is made up of three components; the Cell, the Operation and the Decision. The Cell represents storage of an element of information. The Operation has input(s) and an output and can either represent a single operation or a complex procedure. The Decision has an operator that derives a result using a computation via an operation unit and a decision unit that acts on the computation result and directs the flow. These components are shown graphically in the first two columns of Table 1.

The Precedence graph is made up of six components, the Start node, the End node, the Operation node, the AND node, the OR node and the Decision node. These are displayed in their graphical representation in the first two columns of Table 2. The Start node emits an activation signal which flows through the graph while the End node receives and absorbs that same signal. The Operation node performs some simple or complex operation using the inputs provided. The AND node effectively synchronizes the flow of control as it waits for a signal on all of its inputs before continuing. The OR node, activates when a signal is received on any one or more of its inputs. Finally, the decision node performs some computation and conditionally directs flow based upon the result of that computation.

Throughout this paper a consistent example will be used to show the transition from the CSM graphs to the UML diagrams. The example will be a very simple order processing system. The example is introduced here through Figures 2 and 3 which depict a Data Flow and Precedence graph, respectively, for the system. There are essentially two parallel paths through the system; one for the financial aspects of processing the order (credit approval and invoicing) and the other for filling the order (pulling items from stock and creating a packing list). In each of these two parallel paths events can occur that can halt the order process such as credit denial or absence of an item in stock.

�

C.	The Unified Modeling Language

The UML is a unification of several previously competing object-oriented modeling schemes. Each of the individual models brought its strengths and unique features to the UML in order to provide a modeling language that is well defined, powerful and applicable to a wide range of computing problems. The intent of the collaboration of several modeling experts was to create a standards-based language that everyone could agree on. Like the CSM, the UML is composed of various graphs which, in UML terminology, are called diagrams. There are nine diagrams in the UML that together describe the structural, behavioral and architectural aspects of the system.

Class diagram - a structural diagram that describes the types of objects within the system and the relationships (association and subtype) between them. The Class diagram also shows attributes and operations of the objects it describes.

Object diagram - a structural diagram that models the instances of the classes shown in the class diagram at a particular point in time.

Use case diagram - a behavioral diagram that describes how “actors” (i.e. users, other systems) use the system through its usage scenarios.

Sequence diagram - an interaction diagram that has emphasis on the time-ordered events and messages between objects.

Collaboration diagram - an interaction diagram that focuses on the structural organization of objects that send and receive messages to each other.

Statechart diagram - a behavioral diagram used to model how an object reacts to its environment and in doing so changes the state it is in.

Activity diagram - a flowchart-type diagram showing the flow of control between activities within the system. Its origins are partly in Petri nets.

Component diagram - an architectural diagram that models the physical aspects of the software such as where code libraries, files and documents reside.

Deployment diagram - an architectural diagram that describes the topology of the hardware of the system.

In describing a software system, one, all or any subset of these diagrams can be used depending upon the intent of the modeling effort. Each diagram is unique in its purpose but all are built upon a common set of primitives allowing the diagrams to be related and build upon what the others contain. A common theme among the UML diagrams is minimalism. Only those aspects of a component (e.g. object, class) that are relevant to the situation being described are shown. The remainder are hidden.

III.	Establishing a Model Relationship

Upon first look, there is no obvious relationship between the graphs of the CSM and the diagrams of the UML. Though, this does not seem inappropriate since each has a different intended use; that of the CSM being very specific to the area of task-level specification and that of the UML being very general in nature. The challenge is then to find a relationship between the two models or, more precisely, a way that the UML can represent the CSM.

Rather that initially focus on the individual diagrams of the UML, the approach is to consider the components of each model and to attempt to first establish a relationship at the component level that can serve as a foundation for the broader relationship. This immediately raises a fundamental difference between the CSM and the UML that can be traced to their software roots. The CSM was formulated in a time where procedural programming was state of the art. The UML takes an object-oriented approach which, by design, is obviously much different from procedural programming. So, the challenge is more than just mapping one model to another but also finding a mapping from the procedural programming arena to the object-oriented one.

At the component level, both graphs of the CSM are made of three elements; the Cell, the Operation� and the Decision. The Operation in the CSM clearly translates to an operation of an object in the UML. Along those same lines, a Cell of the CSM might be considered analogous to an attribute of an object in the UML. The Decision component in the CSM is a little less clear. All UML diagrams show classes or objects but not all show decisions. Even so, for this argument we will consider the CSM Decision element analogous to a decision in the UML. We might also consider it analogous to the guard condition that can be applied to a message in a diagram used to show interaction between objects. As such, for finding an equivalency for a CSM graph in the UML, we must restrict our consideration to only those diagrams of the UML which use decisions and/or guard conditions.

A.	Activity diagrams

In order to further relate the two models the next step is to look closer at the actual diagrams in the UML. Some diagrams such as the Class and Object diagrams clearly do not apply as they are used to show structural aspects. We are clearly looking to represent behavioral properties. There are several aspects of Activity diagrams that merit closer look. Activity diagrams model the flow of control between objects which is a feature of both the CSM’s Data Flow and Precedence graphs.

A more in-depth look at Activity diagrams reveals that they are composed of several simple components:

initial and final states - These represent the start and end of the flow, respectively.

action/activity states - An Action represents an executable atomic computation. Activity states are a composition of Actions�.

transitions - A directed arrow used to link components of the Activity diagram in order to describe the flow of control passed between those components.

sequential branches - A branch has one incoming transition and two or more outgoing transitions that are conditionally traversed depending upon the result of the branch logic.

concurrent forks and joins - Use to initiate or synchronize, respectively, parallel flows of control.

object flows - Use to show the relationship of Actions with the associated objects. The objects are represented using what class the object is from, the name of the object, the state(s) of the object and the attribute(s) of the object. Of these parameters only those that are relevant are shown.

The proposed relationship between the CSM Data Flow Graph components and the UML Activity Diagram components is shown in Table 1. As the equivalencies are drawn we see that in some cases the CSM component can be represented by a single component of the UML but in other cases several components of the UML are strung together to represent the CSM version.

CSM Component�
CSM Representation�
UML Activity Diagram Representation�
UML Activity Component(s)�
�
Cell�

��

��
Attribute of an Object�
�
Operation�

��

��
Action state�
�
Decision�
��

��
Action state coupled with a Sequential branch�
�

Relationship Between CSM Data Flow Graph Components and the UML Activity Diagram Components

Table 1

As hypothesized earlier, a Cell can accurately be represented by an attribute of an object. An Operation in the CSM can be represented by an action state in the activity diagram. A Decision (which in the CSM is the composition of an Operation that evaluates a predicate followed by the decision unit) can be similarly represented in the UML with an Action state that feeds a result to a Sequential branch. We will show how the relationships between components in the CSM translate into similar relationships in the UML shortly with an example.

Similar to the relationship just established between the Data Flow graph and Activity diagram, a relationship between the Precedence graph components of the CSM and the Activity diagram of the UML can be created. This relationship is shown here in Table 2. The Start and End CSM components have clear equivalents in the Activity diagram. Like the relationship just described for the Data Flow graph, the Operation and Decision elements can be analogously translated to the Activity diagram. For the AND operation of the CSM we have chosen the Concurrent join in the Activity diagram. Functionally in the CSM the AND will bring together through synchronization two parallel lines of processing. This can be precisely represented in the UML by the Join. The OR has no exact equivalent but can be represented by the composition of three Actions. The third Action will be initiated when it receives an activation signal from either of the two Actions that preceded it.

CSM Component�
CSM Representation�
UML Activity Diagram Representation�
UML Activity Component(s)�
�
Start�

��

��
Initial state�
�
End�

��

��
Final state�
�
Operation�

��

��
Action state�
�
AND�

��

��
Concurrent join�
�
OR�

��

��
A composition of Action states�
�
Decision�

��

��
Sequential branch�
�

Relationship Between CSM Precedence Graph Components and the UML Activity Diagram Components

Table 2

Now that the component-level relationship has been established we can extended that to start to see the model relationship. It is easiest to establish the relationship between the CSM Precedence graph and the Activity diagram. After doing so the relationship between the CSM Data Flow graph and the Activity diagram can be built on top of that result. Figure 4 shows the Activity diagram for the sample problem we described with the CSM graphs in Figures 2 and 3. This diagram has nearly a one-to-one relationship with the Precedence graph. It could have been identical had we not taken advantage of a notational property of the Activity diagram in representing looping structures. This is the precisely the *[For each Line Item] multiple trigger on the leg of the diagram that represents processing each line item of the order. This notation means that each Action between the fork and the related join is executed for each line item. Only once each has completed does flow continue after the join. This is a nice way to represent a looping structure where the processing of each iteration is independent such that each iteration can be done in parallel with the others.

To achieve the UML representation of the Data Flow graph, we can use the Object Flow extensions of the Activity diagram that will show how the objects are related to the actions that create, destroy or modify them. The objects contain the attributes which are the UML equivalent for the CSM data Cell. For our ordering system example, this is shown in Figure 5 through an enhanced Activity diagram. When an object has a dependency on an Action, a dashed arrow is drawn from the Action pointing to the object. Conversely, when an Action has a dependency on an object, a dashed arrow is drawn pointing from the object to the Action. Only those aspects of the object (attributes, object class, object name or status) that are relevant to the dependency are shown on the object representation.

�

Performance analysis iof the system using the Activity diagram could proceed exactly as it does with the graphs of the CSM. In the CSM, this is done by assessing three factors assigned to each operation[3]. These three factors, execution time, spatial cost of the operation and spatial cost of the external data required by the operation can be applied to the Action in the Activity diagram.

There are other diagrams of the UML that may be applied for a more complete analysis of performance. Activity diagrams are quite procedural in nature although they show limited relationships with the objects of the system. By taking a more object-based view of the system and using some of the process-type diagrams of the UML we can get a better measurement of the spatial and time costs of the system.

To transition from the Activity diagram to the purer object diagrams we must assign the behavior of the actions to objects. This is where we must face the transition from procedural to object-based programming previously mentioned. This can be accomplished by first drawing “swimlanes” onto the Activity diagram which functionally group the Actions. By considering these groupings and the Object Flows we can make an educated assignment of action to object. For example we will assign the Authorize Payment action to the Authorization object, the Prepare Invoice action to the Invoice object, the Receive Order, Ship Order and Cancel Order actions to the Order object, the Get Line Item, Check Item Inventory and Re-Order actions to the Line Item object and the Add to Packing List action to the Packing List object.

B.	Interaction diagrams

In the UML process views of the system are useful when investigating performance, scalability and throughput. Interaction diagrams are one important type of process view. They clearly show objects and their relationships including the messages they use to interact. There are two type of Interaction diagrams; the Sequence diagram and the Collaboration diagram. The Sequence diagram emphasizes the time ordering of message between objects. This very nicely equates to the Precedence graph of the CSM. The second Interaction diagram, the Collaboration diagram focuses on the structural organizations of objects that send and receive messages. This can be equated to the Data Flow graph of the CSM.

�

Unlike the Activity diagrams, Interaction diagrams are not well suited in modeling behavior across all paths through a software system. Interaction diagrams are best at showing a sequential process. The CSM Data Flow and Precedence graphs are designed to show every path (in UML terminology, Use Case) through the system. Although, Interaction diagrams are capable of showing multiple paths through the use of conditionals on messages, they can get very messy and hard to read when they do. This leads to the message they are trying to convey becoming less clear and often confusing. This means that we will still need the Activity diagram to accurately represent what the CSM shows as far as overall system function but we can use the Interaction diagrams in places where we would like to take a closer examination of performance of a particular path through the system.

Another important aspect to consider is that the two Interaction diagrams, Sequence and Collaboration, are semantically equivalent since they are both derived from the same information bits of the UML. This is very similar to the relationship between the Data Flow Graph and the Precedence Graph of the CSM. Each of these two graphs are derived from the same information (operators, cells and decisions). Note that although in these two cases the pairs of diagrams are semantically equivalent they each do show some information that the other in the pair does not.

A Sequence diagram for one path through the sample problem is shown in Figure 6. The path shown is the credit authorization leg of the order process. This includes the payment authorization and the creation of the invoice. Sequence diagrams emphasize the time ordering of messages and are read top to bottom and left to right. In the Sequence diagram we can see the assignment of actions to objects. The AuthorizePayment action is now an operation on the Authorization object. Likewise, the CancelOrder and ShipOrder actions are now self-delegated operations on the Order object.

The Sequence diagram has several important aspects worth noting. In the diagram each object is listed across the top. The object is typically labeled with objectname:classname. The object’s name is typically used only when it provides additional clarity about the context of the class being used as in our case where we have several instances of the Order class being used at any given time. A vertical dashed line is used to show the objects lifeline. The lifeline describes the duration that the object exists for. Superimposed onto a lifeline is a rectangle that indicates the objects activation. The activation indicates when the object is executing or waiting for a subroutine to return. A message from one object to another is shown with a solid arrow labeled with the message as in authorized = authorizePayment(). This particular message invokes the authorizePayment() operation on the Authorization object. The returned value is stored in the authorized flag. Messages can be sent based upon a condition such as the cancelOrder() message which is only sent if the authorized flag contains the value [denied]. A dashed arrow represents a return from a message.

�

A Collaboration diagram for the sample problem is shown in Figure 7. Although it is based upon the same information as the Sequence diagram it provides a clearer picture of how the objects interact. It includes object, messages, conditions and self-delegation which have the same definitions as they did in the Sequence diagram. Additionally, it contains sequence numbers which explicitly define what order the messages are sent. This information was implied with the Sequence diagram.

C.	Performance Considerations

It appears that only the combination of Interaction and Activity diagrams will adequately describe what the CSM represents. The approach is as follows. Use Activity diagrams to describe the software system as a whole. This can appropriately describe what the CSM Data Flow and Precedence graphs describe. The Interaction diagrams in the form of the Sequence and Collaboration diagrams can be used to analyze particular usage scenarios (use cases in UML terms) of the systems described by the Activity diagram. This can provide the same level of or more detail than what the CSM graphs are capable of.

From a performance perspective, modeling the time and space aspects of a system is critical. The Sequence and Collaboration diagrams are particular well suited for this. There are several features of the UML that can be applied to the Sequence and Collaboration diagrams that aid in this evaluation. These are precisely timing marks, time expressions, timing constraints and location. Figure 8 contains a Sequence diagram for our sample problem with some of the time and space parameters applied (changes from the original Sequence diagram shown in figure 6 are in bold).

Timing marks are added to the messages between objects as a prefixed string as with the “a.” added to the authorizePayment() message. Time expressions are expressions that evaluate relative or absolute time and appear, for example, as a.executionTime < 100ms. This could also have been written as authorizePayment < 100ms but the use of the timing mark prevents ambiguity as to which specific instance of the operation the expression is referring to. Time expressions can be written in structured text (a form of pseudo code) as we have done here or more formally in the UML’s Object Constraint Language(OCL)�. Timing constraints are the connection of the time expression to an element in the diagram as {a.executionTime < 100ms} is connected to the return from the Invoice object. This means that the time of the execution from start to finish of the authorizePayment() operation will be within 100ms. Locations specify where the object physically resides such as the {location = Finance_Svr} on the :Authorization object..

�

Time expressions are just one form of semantics that can be attached to operations in the UML. Other semantics values that could be added to an operation could also be its spatial costs in both forms we care about; the data space required internally and the data space required for externally referenced objects. As with the time costs, these could be expressed informally using structured text, very formally using the OCL, or anywhere in between. They might also be expressed in absolute or relative terms.

Sequence and Collaboration diagrams provide an advantage over their CSM equivalents in that they can assess the ramifications of a distributed environment. For example, in the ideal world communication is frictionless and the consideration of the network and other inter-node dependencies can be ignored. In practice, they cannot and so the location of the objects captured by the UML is important. These values can be factored into the time and space expressions in determining their values.

When writing time and space expressions based upon location the layout of the Collaboration diagram can be particularly useful. In it there is little question about what other objects are involved with the object under scrutiny. The time and space expressions for an object can be expected to contain references to only those objects that are connected to it. Once these values are determined they can then be transposed back to the object in the Sequence diagram for use there.

While the CSM’s graphs were useful in measuring the spatial requirements on an operation by operation basis, the lifelines and activation displayed in the Sequence diagram can be used in assessing the spatial costs on the entire functionality being described. Evaluating the operations independently can often lead to difficult analysis when operations that occur concurrently are involved. With the sequence diagram, if we think of a vertical axis on the diagram that represents time we can draw a horizontal line across the diagram at any time, t, which will intersect all objects that are activated at that time. Then, using what we know about the spatial costs of each object, we can accurately sum the spatial costs for the functionality described at the time, t.

IV.	Extension to other layers of the HPM

It is important to note that like the graphs of the CSM, UML diagrams are well suited to show the hierarchical nature of software. In the CSM an operation can represent a single operation or a complex algorithm, itself represented by a CSM. The UML’s Activity diagram has the same property. It can be decomposed where each activity node in the diagram can represent a single action or a complex procedure. The complex procedure can be represented itself by an Activity diagram. Thus, an Activity diagram can be composed of other Activity diagrams.

By capitalizing on this property we can use the UML consistently across the HPM. Once the other three layers of the CSM (System, Task and Architecture) have been individually translated to the UML, the hierarchical nature of the UML can be used to create a model of models where each model is written in a consistent language.

Not all diagrams in UML can be extended to represent the hierarchical aspects described here where one element in a model represents another model. Examples of this are the Sequence and Collaboration diagrams. Those diagrams that do hold this property can serve as the building blocks for the UML-based HPM. Since most of the UML models share a common component set such as objects and classes we can build upon the relations between the UML models. An example of this would be the way we moved from the Activity diagram to the Sequence and Collaboration diagram. For example, if it was determined that one the other levels translated completely and easily to a Collaboration diagram, we could find the Activity diagram representation related to that Collaboration diagram and use that Activity diagram when relating it to the other diagrams in the hierarchy.

V.	Conclusion

We have seen that the proposed Hierarchical Performance Model can benefit from a common representation of its models. That commonality allows the models to be easily related and can be accomplished using the Unified Modeling Language. Translation of one of the models in the hierarchy, the Computation Structure Model, has been attempted with the work here. This was accomplished in an iterative approach. First, the components of the CSM were translated to the components of the UML. This was extended to relate the diagrams of each approach. It was found that a combination of the UML’s Activity, Sequence and Collaboration diagrams were useful in representing and extending the CSM classification of the system. It was them hypothesized how the UML might be used at other layers of the HPM.

�
V.	References

[1] Fowler, M. and Scott, K., UML Distilled: Applying the Standard Object Modeling Language, Addison-Wesley, 1997.

[2] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language User Guide, Addison-Wesley, 1999.

[3] Sholl, H. A. and Booth, T. L., “Software Performance Modeling Using Computation Structures”, IEEE Transactions on Software Engineering, Vol. SE-1, No. 4, December 1975.

[4] Rumbaugh, J., Jacobson, I. And Booch, G., The Unified Modeling Language Reference Manual, Addison-Wesley, 1999.

� The AND and OR elements in the Precedence Graph of CSM might be considered as just specific types of Operations.

� Since an Action is simply a special case of an Activity where the Activity cannot be further decomposed, we will only talk here about Action states knowing an Activity state can be freely substituted in the discussion.

� The Object Constraint Language is a precise and formal way to define constraints in the UML. It is not discussed here at any depth. More information on it is available in the UML reference materials such as the soon to be published UML Reference Manual [4].

Page � PAGE �3�		� DATE �12/06/98�

