A Specification for The Colored Two-dimensional Bar Code

 		

John Jones

CSE 367-02

October 15, 1997

I. Introduction

The Colored Two-dimensional Bar Code (C2DB) is a variation of the popular two-dimensional bar codes. It is a two-dimensional array of colored dots that can contain a high data density in a small physical space. The addition of color to a two-dimensional bar code effectively adds a third dimension. It can store more than 24,000 characters is a space that is only 130 mm x 40 mm. C2DB has an error-tolerant design that can withstand a considerable amount of damage and distortion. Many of the parameters surrounding the implementation of the C2DB are still as yet undefined. The purpose of this work is to investigate some of these parameters involved in C2DB and to find optimal values for them.

The paper is organized as follows. Section II provides background information on the C2DB symbol. This is information on what has been defined so far for the C2DB structure. Section III will describe the parameters that have not been defined for the C2DB and provide a suggested specification for implementing a program that can be used to determine optimal values for those parameters. Section IV will describe the environment in which the program will be implemented and how testing will be handled. Section V. contains conclusions.

II. Background

II. a. The C2DB Structure

The C2DB symbol is divided into fixed size units called codewords. Each codeword contains 510 pixels that represent 255 characters. That is each character is represented by 2 pixels. 510 pixels was chosen since it was determined as the optimal length to maximize error recovery and data storage [1]. Each pixel can take on 1 of 16 possible colors. The number of colors can be increased to 256. The characters that can be mapped by this process are the 256 of the ASCII character set.

The codewords are further broken in 17 “chunks”, each containing 30 pixels. A chunk is shown in Figure 1. This break up allows each codeword to be scattered within the symbol which results in enhanced robustness to error. The chunks are scattered by first laying the first chunks of all codewords in row-major order followed by the second chunks of all codewords and so on until all 17 chunks of all codewords have been laid. The C2DB symbol is shown in figure 2. A header is placed at the lower left corner. The header contains information about the structure of the symbol. It contains:

the number of codewords

the error correction level

a flag indicating whether the data is compressed

a flag indicating whether the data is encrypted

		

� EMBED FLW3Drawing ���

� EMBED FLW3Drawing ���

II. b. Error correction and detection

Two types of error-related capabilities are provided

:

Error Detection: a self checking mechanism to assure data integrity.

Error Correction: a second mechanism to recover data that is damaged

				

A number of characters are added to each codeword in order to serve as a checksum. Two types of problems are taken into account for

Rejection Errors: occur when a codeword is missing or undecodable.

Substitution Errors: occur when a codeword is mis-decoded.

To allow for differing levels of error detection and correction depending upon the application and environment the symbol will be used in, eight error correction levels are provided. Each codeword contains 255 characters and there is a linear relationship between the number of data characters and the number of checksum characters for every error level.

		Number of data characters + Number of checksum characters = 255

In [1], the error correction levels were defined as follows. In the lowest error level, 0, all characters are reserved for data, thus, no error correction/detection is provided. In error level 1, 223 characters are reserved for data and the remaining 32 are for checksum characters and an error loss of up to 6% can be corrected. In the must robust level, 7, 151 characters hold data and 104 characters hold checksum data and an error loss of up to 20% can be corrected. No additional information was provided in [1] related to the other error correction levels. It was determined that the number of checksum characters for these levels should follow a linear distribution. Table 1 shows the remaining distribution of data characters vs. checksum characters for the remainder of the error correction levels. Those in italics have been added to supplement [1].�

Error Level�
Data Characters�
Checksum Characters�
% Data Loss�
�
0�
255�
0�
�
0�
�
1�
223�
32�
6�
�
2�
211�
44�
9�
�
3�
199�
56�
11�
�
4�
187�
68�
13�
�
5�
175�
80�
16�
�
6�
163�
92�
18�
�
7�
151�
104�
20�
�
Table 1

Reed-Solomon codes are used to implement the error correction mechanism. It has previously been determined that this was the most effective mechanism to use [5]. In Reed-Solomon codes, the code words are constructed with symbols from Galios Fields. They have the property that they can correct up to t lost symbols when 2t parity symbols are added to the codeword. Based on this, Table 1 also shows the percent data loss that each error correction level can provide.

Reed-Solomon codes can correct both “erasures”, here called rejection errors, and substitution errors. It can correct twice as many erasures as substitution errors. They are also good at detecting adjacent errors or blocks of errors. This is in line with our application of it to error correction for bar codes. Errors to bar codes will typically be to adjacent data elements. Many other bar coding techniques [3], [6], [7] use Reed-Solomon codes.

II. c. Compression

In the case where more than the 24,000 characters needs to be encoded on the symbol, compression is utilized. The compression algorithm chosen is a mixture of Limpel -Zev and Arithmetic Coding. A compression ratio of almost 3 : 1 can be achieved. Compression is done before the encoding is done. A flag is set in the header to indicate that the data is compressed.

A study of the literature on existing bar codes reveals a wide array of compression algorithms are in use. The only consistency was that most had different modes depending on the type of data that the symbol contained; ASCII, binary, numeric, etc. Most modes maxed out at around 3:1 compression.

III. A Specification for C2DB

III. a. Assumptions

In developing a specification for the implementation of C2DB we need to make several assumptions. These assumptions are considered reasonable and will allow for an easier implementation by eliminating some variables.

The physical height and width of the pixels need not be considered. It is a function only of the printing and scanning technologies used in the process.

The codeword size chosen at 255 characters or 510 pixels is the optimum size.

The linear distribution of error code in Table 1 is appropriate. Changes in the meaning of the error codes should easily be incorporated into the program. It is difficult to say whether the error code definitions have any bearing on the successfulness of a given codeword scattering. Working with the existing definitions should shed some light on this.

III. b. Variables

The C2DB structure as outlined in Section II has a lot of flexibility in its interpretation. There are several parameters that can be varied in the implementation. In this implementation, the program will allow variances in the following parameters:

	

The scattering method of the codewords.

The number of chunks per codeword.

Various mechanisms or algorithms for distributing the codewords need to be investigated. Simply distributing the codewords as described in Figure 2 may result in codewords appearing just as or almost as close as if they were not scattered. Consider the extreme case where each row contains 17 codeword chunks. This would result in all chunks for each codeword lining up in a vertical fashion, one per column. Or the case where the number of chunks per row is one more or one less that 17. The chunks for each codeword would then line up on the diagonal. Clearly there must be a better way.

�There are two ways to go about this. The first way can be by simply varying the number of chunks per row so that the distance between chunks for a given codeword is maximized. Once the ideal number of chunks per row is found it could be fixed and added to the specification for the C2DB. One potential drawback of this approach is that this would reduce the flexibility of C2DB since symbols would be restricted with a given width.

�The second way would be to devise an algorithm that, given some symbol width, would distribute the chunks so that the distance between chunks for a given codeword is maximized. The algorithm to do this is still being investigated.

An investigation into other bar codes and how they might implement similar mechanisms was attempted. The only bar code that has been found that has a similar feature is Data Matrix [6]. Data Matrix is a ‘checker board’ symbology. Data is represented as black and white squares on a grid pattern. An example is in Figure 3. Data Matrix scatters the data according to one of 256 distribution patterns. The distribution key identifies which of the 256 patterns was used. The key is always stored in a specific location within the symbol. Also of interest to this discussion is the Data Matrix specification for how data redundancy is accomplished. It is accomplished by increasing the number of data cells or squares that represent a particular character. The redundancy may range from none to 400% where each character is represented 4 times. At least a three cell differential between bit patterns of respective characters of data is utilized so that if a single cell is damaged there is still a two cell difference to a duplicate cell.

� EMBED PaintShopPro ���

Data Matrix Symbol

Figure 3

The second parameters that will be investigated is the number of chunks per codeword. It has been specified that each codeword will be further broken into 17 chunks [1]. No justification has been presented as to why this value was chosen. It deserves investigation.

Both of these strategies will be attempted. The second is preferable since it allows the height and width of the bar code symbol to be varied. Most of the latest bar codes allow this feature. In increases the applications of the bar code since it may be adjusted to fit in spaces of differing sizes.

II. c. Program Flow

Two programs will be implemented, one for the decoding and one for the encoding. They are separate functions and will most likely will be used in two different places. The flow of the encoding logic is shown in Figure 5, the flow for the decoding logic is shown in Figure 6.

� EMBED FLW3Drawing ���

III. d. Other issues

At this time the following issues will not be considered as part of this specification, but, it is realized that in order for C2DB to be successful, all or part of these must be included.

Chaining symbols. Even though C2DB makes great strides in increasing data density, often the data that need be represented cannot be held by one symbol, there may be a mechanism to allow multiple symbols to be chained together.

Symbol orientation. Due to their nature, two-dimensional symbols that are to be read successfully need to often incorporate some way to determine which way the symbol should be oriented.

Scanning at an angle. Often the scanner may read the symbol in a way that is exactly parallel with each row. If the angle is off, there needs to be a way that allows for the data in adjacent rows not to be confused.

Encryption schemes. Ignoring encryption in this implementation should not reduce the value of the work done here. The data file that is presented to the system could very easily be a data file that has been encrypted by some pre-process.

Header placement. Consideration must be given to adding some robustness to the header. This is such a critical piece of the bar code symbol that should it be lost, the entire symbol would be undecodable.

IV. The Implementation

IV. a. The Execution Environment

The potential environment under which the program will run is undetermined at this time. We can get a good indication from the other areas where other bar code technologies are used. To generate bar codes a Personal Computer or Workstation connected to a printer is often used. Various devices are used to read bar codes such as hand-held stand-alone scanners and scanners attached to PC or Workstation devices.

Because of the wide variety of locations where the program logic to generate and/or read these symbols may be deployed it has been decided to implement in the ‘C’ language. ‘C’ compilers exist for many different platforms so the code may be easily ported to where it needs to run. Using ‘C’ also makes sense since several ‘C’ implementations of Reed-Solomon codes and Limpel-Zev already exist and can be easily obtained and integrated.

For ease of development I have chosen to implement the program on my Intel-based Personal Computer. I have two ‘C’ compilers; one is Turbo ‘C++’ for DOS and the other is Visual C++ for Windows. I have not yet decided which to use but I am leaning toward working under DOS since it is far less complicated than the programming in the Windows environment and my program really does not require any of the Windows UI features, yet.

Since the program is not graphically intensive nor does it require complex calculations on large data, I feel that my Intel 486 66Mhz machine should be adequate.

IV. b. The Testing Process

The work done here would not be complete without a way to determine how optimal the results for a given parameter set were. There are two areas that will determine the effectiveness of the parameters:

Performance

Robustness

In this case performance is measured primarily in terms of how long the encoding and decoding processes as defined in Figures 5 and 6, respectively take.

The recovery from errors is a key feature of C2DB which we are trying to measure. This is more difficult to measure, especially for rejection errors. These errors can be introduced by a physical defect such as a scratch, a spot or a mark. All of these can vary in size and are not entirely random. This means that we cannot just introduce errors by simply changing or removing random pixels by adding noise. There is usually some pattern associated with them.

�A strategy for simulating defects to symbols needs to be created. I had considered creating a graphical representation of the encoded symbol as something that was nice to have. Now it seems to get have added importance since it would allow the program’s user to introduce a defect on the symbol through the use of some drawing tool(s). The decoding process could then be run on the symbol to attempt to resolve the errors. Of course, in order to be able to test the same defect between symbols a defect needs to be able to be reproduced from one program execution to another. The Windows clipboard should provide a mechanism to accomplish this.

V. Conclusion

C2DB allows much higher data capacity than many of the most recent and popular two-dimensional bar codes. The combination of Reed-Solomon error correction and the scattered codeword chunks should produce a very high error tolerance with a low overhead. The addition of color effectively adds a third dimension. Although this work does not resolve all of the issues surrounding the implementation, it takes important steps toward discovering optimal values for some key parameters of C2DB.

VI. References

[1] Mahmoud, M., El-Komy, A., A/Sattar, B., El-Mahdy, M., Hamed, O., El-Attar, W., Ammar, R.A., Improved Error Correction and Compression techniques applied to Coloured Two Dimensional Bar-code.

[2] Wang, Y.P. System for Encoding and Decoding Data in Machine Readable Graphic Form, United States Patent 5,243,655, September 7, 1993.

[3] PDF417 Tutorial, Automatic Data Col
